翻訳と辞書
Words near each other
・ Cartagogena
・ Cartagogena februa
・ Cartagogena ferruminata
・ Cartagogena filtrata
・ Cartajima
・ Cartal River
・ Cartaletis gracilis
・ Cartamundi
・ Cartan
・ Cartan (crater)
・ Cartan connection
・ Cartan decomposition
・ Cartan formalism (physics)
・ Cartan matrix
・ Cartan model
Cartan pair
・ Cartan subalgebra
・ Cartan subgroup
・ Cartan's criterion
・ Cartan's equivalence method
・ Cartan's lemma
・ Cartan's lemma (potential theory)
・ Cartan's theorem
・ Cartan's theorems A and B
・ Cartanal
・ Cartanul River
・ Cartan–Brauer–Hua theorem
・ Cartan–Dieudonné theorem
・ Cartan–Eilenberg resolution
・ Cartan–Hadamard theorem


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cartan pair : ウィキペディア英語版
Cartan pair

In the mathematical fields of Lie theory and algebraic topology, the notion of Cartan pair is a technical condition on the relationship between a reductive Lie algebra \mathfrak and a subalgebra \mathfrak reductive in \mathfrak.
A reductive pair (\mathfrak,\mathfrak) is said to be Cartan if the relative Lie algebra cohomology
:H^
*(\mathfrak,\mathfrak)
is isomorphic to the tensor product of the characteristic subalgebra
:\mathrm\big(S(\mathfrak^
*) \to H^
*(\mathfrak,\mathfrak)\big)
and an exterior subalgebra \bigwedge \hat P of H^
*(\mathfrak), where
*\hat P, the ''Samelson subspace'', are those primitive elements in the kernel of the composition P \overset\tau\to S(\mathfrak^
*) \to S(\mathfrak^
*),
*P is the primitive subspace of H^
*(\mathfrak),
*\tau is the transgression,
*and the map S(\mathfrak^
*) \to S(\mathfrak^
*) of symmetric algebras is induced by the restriction map of dual vector spaces \mathfrak^
* \to \mathfrak^
*.
On the level of Lie groups, if ''G'' is a compact, connected Lie group and ''K'' a closed connected subgroup, there are natural fiber bundles
:G \to G_K \to BK,
where
G_K := (EK \times G)/K \simeq G/K
is the homotopy quotient, here homotopy equivalent to the regular quotient, and
:G/K \overset\chi\to BK \overset\to BG.
Then the characteristic algebra is the image of \chi^
*\colon H^
*(BK) \to H^
*(G/K), the transgression \tau\colon P \to H^
*(BG) from the primitive subspace ''P'' of H^
*(G) is that arising from the edge maps in the Serre spectral sequence of the universal bundle G \to EG \to BG, and the subspace \hat P of H^
*(G/K) is the kernel of r^
* \circ \tau.
==References==

* Werner Greub, Stephen Halperin, and Ray Vanstone ''Connections, Curvature, and Cohomology'' Volume III, Academic Press (1976).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Cartan pair」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.